# Audio Setup Guide for Fedora Core 41

# Audio Setup Guide for Fedora Core 41

This guide will help you set up a professional audio system on Fedora Core 41, similar to what you would find in Ubuntu Studio. It focuses on configuring JACK audio server with low-latency performance for audio processing, supporting capabilities for biometric voice analysis and integration with the Quantum Vacuum Propulsion Initiative (QVPI).

## Installing JACK Audio Connection Kit

JACK is a professional audio server that allows for routing audio between applications with low latency.

1. **Install JACK and related utilities**:

```bash

sudo dnf install jack-audio-connection-kit qjackctl pulseaudio-module-jack cadence ardour audacity hydrogen lmms

```

2. **Install additional audio processing tools**:

```bash

sudo dnf install sox ecasound ladspa-swh-plugins calf-plugins zita-at1 zita-rev1 rnnoise eq10q fil-plugins

```

3. **Install audio development libraries**:

```bash

sudo dnf install jack-audio-connection-kit-devel alsa-lib-devel portaudio-devel fftw-devel

```

## Configuring Real-Time Kernel for Low Latency

For optimal audio performance, you'll need a real-time kernel with low latency.

1. **Install the real-time kernel**:

```bash

sudo dnf install kernel-rt kernel-rt-devel

```

2. **Configure system limits for real-time audio processing**:

```bash

sudo nano /etc/security/limits.d/99-audio.conf

```

3. **Add the following lines to the file**:

```

@audio - rtprio 99

@audio - memlock unlimited

@audio - nice -19

```

4. **Add your user to the audio group**:

```bash

sudo usermod -a -G audio $USER

```

5. **Reboot your system**:

```bash

sudo reboot

```

## Configuring JACK Audio Server

1. **Launch QJackCtl**:

```bash

qjackctl &

```

2. **Configure JACK settings**:

- Click on "Setup"

- Set "Driver" to "ALSA"

- Set "Interface" to your audio device

- Set "Sample Rate" to 48000

- Set "Frames/Period" to 128 (smaller values reduce latency but increase CPU usage)

- Set "Periods/Buffer" to 2

- Enable "Force 16bit" if your hardware requires it

- Check "Realtime"

- Click "OK"

3. **Start JACK server**:

- Click "Start" in QJackCtl

## Integrating PulseAudio with JACK

To ensure all applications can route audio through JACK:

1. **Configure PulseAudio to work with JACK**:

```bash

sudo nano /etc/pulse/default.pa

```

2. **Find the line with `load-module module-udev-detect` and change it to**:

```

load-module module-udev-detect tsched=0

```

3. **Add the following lines at the end of the file**:

```

### Enable JACK modules

load-module module-jack-sink channels=2

load-module module-jack-source channels=2

set-default-sink jack_out

set-default-source jack_in

```

4. **Restart PulseAudio**:

```bash

pulseaudio -k && pulseaudio --start

```

## Installing Professional Audio Software

1. **Digital Audio Workstation (DAW)**:

```bash

sudo dnf install ardour

```

2. **Audio Editors**:

```bash

sudo dnf install audacity mhwaveedit

```

3. **MIDI Sequencer and Drum Machine**:

```bash

sudo dnf install rosegarden qtractor hydrogen

```

4. **Audio Effects and Plugins**:

```bash

sudo dnf install calf-plugins ladspa-*-plugins lv2-*-plugins

```

5. **Audio Visualization Tools**:

```bash

sudo dnf install baudline sonic-visualiser

```

## Setting Up Acoustic Levitation Capabilities

For the QVPI project's acoustic levitation component:

1. **Install scientific computing libraries**:

```bash

sudo dnf install python3-numpy python3-scipy python3-matplotlib

```

2. **Install ultrasonic transducer control libraries**:

```bash

sudo dnf install libusb-devel python3-pyusb

```

3. **Create a Python script for acoustic array control**:

```bash

mkdir -p ~/qvpi/acoustic

nano ~/qvpi/acoustic/transducer_array.py

```

4. **Add the following code to the script**:

```python

#!/usr/bin/env python3

"""

QVPI Acoustic Levitation Control System

This script controls an array of ultrasonic transducers to create

acoustic standing waves for particle levitation.

"""

import numpy as np

import matplotlib.pyplot as plt

from scipy import signal

import time

# Configuration

NUM_TRANSDUCERS = 64 # Number of transducers in the array

FREQUENCY = 40000 # 40 kHz ultrasonic frequency

SAMPLING_RATE = 250000 # 250 kHz sampling rate

AMPLITUDE = 1.0 # Maximum amplitude

def generate_phase_pattern(pattern_type='focus', focal_point=(0, 0, 0.1)):

"""Generate phase patterns for different acoustic field configurations"""

phases = np.zeros(NUM_TRANSDUCERS)

# Transducer positions in a square array

size = int(np.sqrt(NUM_TRANSDUCERS))

spacing = 0.01 # 1cm spacing between transducers

positions = np.zeros((NUM_TRANSDUCERS, 3))

for i in range(size):

for j in range(size):

idx = i * size + j

positions[idx] = [i*spacing - (size/2)*spacing,

j*spacing - (size/2)*spacing,

0]

if pattern_type == 'focus':

# Calculate phases to focus at focal_point

for i in range(NUM_TRANSDUCERS):

distance = np.linalg.norm(positions[i] - np.array(focal_point))

wavelength = 343 / FREQUENCY # speed of sound / frequency

phases[i] = (2 * np.pi * (distance % wavelength)) / wavelength

elif pattern_type == 'vortex':

# Create acoustic vortex beam with orbital angular momentum

center = np.mean(positions[:, :2], axis=0)

for i in range(NUM_TRANSDUCERS):

x, y = positions[i, :2] - center

angle = np.arctan2(y, x)

phases[i] = angle # Creates a phase winding of 2Ï€

elif pattern_type == 'standing_wave':

# Create a standing wave pattern

for i in range(NUM_TRANSDUCERS):

phases[i] = np.pi * (positions[i, 0] > 0) # Half in-phase, half out-of-phase

return phases, positions

def simulate_acoustic_field(phases, positions, resolution=50):

"""Simulate the acoustic pressure field in a 2D plane"""

x = np.linspace(-0.1, 0.1, resolution)

y = np.linspace(-0.1, 0.1, resolution)

z = 0.05 # Fixed z-plane for visualization

X, Y = np.meshgrid(x, y)

pressure = np.zeros((resolution, resolution), dtype=complex)

k = 2 * np.pi * FREQUENCY / 343 # Wave number

for i in range(NUM_TRANSDUCERS):

xi, yi, zi = positions[i]

phase = phases[i]

# Calculate distance from each transducer to each point in the field

R = np.sqrt((X - xi)**2 + (Y - yi)**2 + z**2)

# Acoustic pressure contribution (simplified model)

contribution = np.exp(1j * (k * R + phase)) / R

pressure += contribution

return X, Y, np.abs(pressure)**2

def visualize_field(X, Y, field):

"""Visualize the acoustic pressure field"""

plt.figure(figsize=(10, 8))

plt.pcolormesh(X, Y, field, shading='auto', cmap='viridis')

plt.colorbar(label='Pressure Intensity')

plt.title('Acoustic Pressure Field')

plt.xlabel('X (meters)')

plt.ylabel('Y (meters)')

plt.axis('equal')

plt.tight_layout()

plt.savefig('acoustic_field.png')

plt.show()

def main():

"""Main function to demonstrate acoustic field control"""

print("QVPI Acoustic Levitation Simulation")

print("1. Focused Field")

print("2. Vortex Beam")

print("3. Standing Wave")

choice = input("Select pattern type (1-3): ")

if choice == '1':

pattern = 'focus'

elif choice == '2':

pattern = 'vortex'

else:

pattern = 'standing_wave'

phases, positions = generate_phase_pattern(pattern)

X, Y, field = simulate_acoustic_field(phases, positions)

visualize_field(X, Y, field)

print(f"Acoustic field pattern '{pattern}' generated and visualized")

print("This simulation demonstrates the acoustic field configuration")

print("that could be used in the QVPI vessel for acoustic levitation.")

if __name__ == "__main__":

main()

```

5. **Make the script executable**:

```bash

chmod +x ~/qvpi/acoustic/transducer_array.py

```

## Advanced Audio Monitoring for QVPI

To monitor and analyze audio signals from the QVPI:

1. **Install audio analysis tools**:

```bash

sudo dnf install python3-librosa python3-sounddevice python3-pyaudio

```

2. **Create a real-time audio analysis script**:

```bash

nano ~/qvpi/acoustic/audio_analyzer.py

```

3. **Add the following code**:

```python

#!/usr/bin/env python3

"""

QVPI Audio Monitoring and Analysis System

Real-time analysis of acoustic signatures from the QVPI system.

"""

import numpy as np

import matplotlib.pyplot as plt

import sounddevice as sd

import scipy.signal as signal

from threading import Thread

import time

import queue

# Audio settings

SAMPLE_RATE = 48000

BLOCK_SIZE = 2048

CHANNELS = 1

Q = queue.Queue()

# FFT settings

FREQ_MIN = 20

FREQ_MAX = 20000

FFT_SIZE = 4096

# Initialize plot

plt.ion()

fig, (ax1, ax2) = plt.subplots(2, 1, figsize=(10, 8))

line1, = ax1.plot(np.zeros(BLOCK_SIZE))

line2, = ax2.plot(np.zeros(FFT_SIZE//2))

# Set up plot parameters

ax1.set_ylim(-1, 1)

ax1.set_xlim(0, BLOCK_SIZE)

ax1.set_title('Waveform')

ax1.set_xlabel('Samples')

ax1.set_ylabel('Amplitude')

freq_scale = np.linspace(0, SAMPLE_RATE/2, FFT_SIZE//2)

ax2.set_ylim(0, 100)

ax2.set_xlim(FREQ_MIN, FREQ_MAX)

ax2.set_xscale('log')

ax2.set_title('Frequency Spectrum')

ax2.set_xlabel('Frequency (Hz)')

ax2.set_ylabel('Magnitude (dB)')

ax2.grid(True)

# Resonance detection parameters

TARGET_RESONANCES = [432, 528, 639, 741, 852, 963]

RESONANCE_TOLERANCE = 5 # Hz

resonance_markers = []

for freq in TARGET_RESONANCES:

marker, = ax2.plot([freq, freq], [0, 100], 'r--', alpha=0.5)

resonance_markers.append(marker)

ax2.text(freq, 90, f'{freq} Hz', rotation=90, verticalalignment='top')

plt.tight_layout()

def audio_callback(indata, frames, time, status):

"""Callback for audio input stream"""

if status:

print(f"Status: {status}")

Q.put(indata.copy())

def update_plot():

"""Update the plot with new audio data"""

while True:

try:

# Get data from queue

data = Q.get(block=False)

# Update time domain plot

samples = data[:, 0]

line1.set_ydata(samples)

# Calculate FFT

windowed = samples * signal.windows.hann(len(samples))

spectrum = np.abs(np.fft.rfft(windowed, n=FFT_SIZE))

spectrum_db = 20 * np.log10(spectrum + 1e-10)

# Update frequency domain plot

line2.set_ydata(spectrum_db[:FFT_SIZE//2])

# Detect resonances

detect_resonances(spectrum_db[:FFT_SIZE//2], freq_scale)

# Redraw plots

fig.canvas.draw_idle()

fig.canvas.flush_events()

except queue.Empty:

time.sleep(0.01)

continue

def detect_resonances(spectrum, frequencies):

"""Detect and highlight resonant frequencies"""

# Find peaks in the spectrum

peaks, _ = signal.find_peaks(spectrum, height=50, distance=20)

peak_freqs = frequencies[peaks]

peak_mags = spectrum[peaks]

# Check if any peaks are near our target resonances

for i, target in enumerate(TARGET_RESONANCES):

matches = np.where(np.abs(peak_freqs - target) < RESONANCE_TOLERANCE)[0]

if len(matches) > 0:

closest = matches[np.argmin(np.abs(peak_freqs[matches] - target))]

resonance_markers[i].set_color('r')

resonance_markers[i].set_alpha(1.0)

else:

resonance_markers[i].set_color('r')

resonance_markers[i].set_alpha(0.3)

def main():

"""Main function to start audio monitoring"""

print("QVPI Audio Monitoring System")

print("Starting real-time audio analysis...")

# Start audio stream

stream = sd.InputStream(

samplerate=SAMPLE_RATE,

blocksize=BLOCK_SIZE,

channels=CHANNELS,

callback=audio_callback

)

# Start plot update thread

plot_thread = Thread(target=update_plot)

plot_thread.daemon = True

plot_thread.start()

# Start streaming

with stream:

print("Audio monitoring started. Press Ctrl+C to stop.")

try:

while True:

time.sleep(0.1)

except KeyboardInterrupt:

print("Audio monitoring stopped.")

if __name__ == "__main__":

main()

```

4. **Make the script executable**:

```bash

chmod +x ~/qvpi/acoustic/audio_analyzer.py

```

## Merkaba Acoustic Resonance Configuration

To implement the Merkaba-inspired resonant acoustic cavity setup:

1. **Create a directory for the Merkaba configuration**:

```bash

mkdir -p ~/qvpi/merkaba

```

2. **Create a configuration file**:

```bash

nano ~/qvpi/merkaba/resonance_config.py

```

3. **Add the following code**:

```python

#!/usr/bin/env python3

"""

QVPI Merkaba Acoustic Resonance Configuration

This script calculates optimal resonant frequencies for a Merkaba-shaped cavity.

"""

import numpy as np

import matplotlib.pyplot as plt

from mpl_toolkits.mplot3d import Axes3D

# Constants

SPEED_OF_SOUND = 343 # m/s

AIR_DENSITY = 1.2 # kg/m³

class MerkabaResonator:

def __init__(self, size=1.0):

"""Initialize Merkaba resonator with given size (in meters)"""

self.size = size

self.vertices = self._generate_merkaba_vertices(size)

self.resonant_modes = []

def _generate_merkaba_vertices(self, size):

"""Generate vertices for Merkaba geometry (two interlocked tetrahedra)"""

# First tetrahedron (pointing up)

tetra1 = np.array([

[0, 0, size/2], # Top vertex

[size/2, 0, -size/6], # Bottom right

[-size/4, size*np.sqrt(3)/4, -size/6], # Bottom left

[-size/4, -size*np.sqrt(3)/4, -size/6] # Bottom back

])

# Second tetrahedron (pointing down)

tetra2 = np.array([

[0, 0, -size/2], # Bottom vertex

[size/2, 0, size/6], # Top right

[-size/4, size*np.sqrt(3)/4, size/6], # Top left

[-size/4, -size*np.sqrt(3)/4, size/6] # Top back

])

return {'up': tetra1, 'down': tetra2}

def calculate_resonant_frequencies(self, max_n=5):

"""Calculate resonant frequencies for Merkaba cavity"""

# Approximation: use inscribed sphere and calculate modes

# Real calculation would require solving wave equation in complex geometry

# Estimate effective radius as average distance from center to vertices

distances = []

for direction in ['up', 'down']:

for vertex in self.vertices[direction]:

distances.append(np.linalg.norm(vertex))

effective_radius = np.mean(distances)

# Calculate spherical cavity modes (approximation)

modes = []

for n in range(1, max_n + 1):

for l in range(n):

for m in range(-l, l + 1):

# Zeros of spherical Bessel functions approximation

# In reality, would need to solve for exact zeros

k = np.pi * n / effective_radius

freq = SPEED_OF_SOUND * k / (2 * np.pi)

# Add mode information

modes.append({

'frequency': freq,

'n': n, 'l': l, 'm': m,

'description': f"Mode ({n},{l},{m}): {freq:.2f} Hz"

})

# Sort by frequency

self.resonant_modes = sorted(modes, key=lambda x: x['frequency'])

return self.resonant_modes

def sacred_geometry_frequencies(self):

"""Calculate frequencies associated with sacred geometry ratios"""

# Base frequency (fundamental)

base = 432 # Hz - associated with A=432Hz tuning

# Frequency ratios based on sacred geometry

ratios = {

'1:1': 1.0, # Fundamental

'phi': (1 + np.sqrt(5))/2, # Golden ratio

'sqrt(2)': np.sqrt(2), # Octahedron diagonal ratio

'sqrt(3)': np.sqrt(3), # Tetrahedron height ratio

'3:2': 3/2, # Perfect fifth

'4:3': 4/3, # Perfect fourth

'9:8': 9/8, # Major second

'16:9': 16/9 # Pythagorean major seventh

}

# Calculate frequencies

frequencies = {}

for name, ratio in ratios.items():

frequencies[name] = base * ratio

return frequencies

def visualize_merkaba(self):

"""Visualize the Merkaba geometry with resonant nodes"""

fig = plt.figure(figsize=(10, 8))

ax = fig.add_subplot(111, projection='3d')

# Plot first tetrahedron

tetra1 = self.vertices['up']

faces1 = [

[tetra1[0], tetra1[1], tetra1[2]],

[tetra1[0], tetra1[2], tetra1[3]],

[tetra1[0], tetra1[3], tetra1[1]],

[tetra1[1], tetra1[2], tetra1[3]]

]

for face in faces1:

face = np.array(face)

ax.plot_trisurf(face[:,0], face[:,1], face[:,2], alpha=0.3, color='blue')

# Plot second tetrahedron

tetra2 = self.vertices['down']

faces2 = [

[tetra2[0], tetra2[1], tetra2[2]],

[tetra2[0], tetra2[2], tetra2[3]],

[tetra2[0], tetra2[3], tetra2[1]],

[tetra2[1], tetra2[2], tetra2[3]]

]

for face in faces2:

face = np.array(face)

ax.plot_trisurf(face[:,0], face[:,1], face[:,2], alpha=0.3, color='red')

# Show resonant nodes if calculated

if self.resonant_modes:

# Only plot first few modes

for mode in self.resonant_modes[:5]:

n, l, m = mode['n'], mode['l'], mode['m']

# Simplified visualization - just place markers at estimated positions

r = self.size/2 * (0.3 + 0.1 * n)

theta = np.pi * l/5

phi = np.pi * (m + l) / (2*l + 1) if l != 0 else 0

x = r * np.sin(theta) * np.cos(phi)

y = r * np.sin(theta) * np.sin(phi)

z = r * np.cos(theta)

ax.scatter([x], [y], [z], s=100, c='green',

label=f"{mode['frequency']:.0f} Hz")

# Set plot properties

ax.set_xlabel('X')

ax.set_ylabel('Y')

ax.set_zlabel('Z')

ax.set_title('Merkaba Resonance Configuration')

# Equal aspect ratio

max_range = np.array([

np.max(tetra1[:,0])-np.min(tetra1[:,0]),

np.max(tetra1[:,1])-np.min(tetra1[:,1]),

np.max(tetra1[:,2])-np.min(tetra1[:,2])

]).max() / 2.0

mid_x = (np.max(tetra1[:,0])+np.min(tetra1[:,0])) * 0.5

mid_y = (np.max(tetra1[:,1])+np.min(tetra1[:,1])) * 0.5

mid_z = (np.max(tetra1[:,2])+np.min(tetra1[:,2])) * 0.5

ax.set_xlim(mid_x - max_range, mid_x + max_range)

ax.set_ylim(mid_y - max_range, mid_y + max_range)

ax.set_zlim(mid_z - max_range, mid_z + max_range)

plt.legend()

plt.tight_layout()

plt.savefig('merkaba_resonance.png')

plt.show()

def main():

"""Main function to demonstrate Merkaba resonance calculation"""

print("QVPI Merkaba Acoustic Resonance Calculator")

# Create Merkaba resonator

size = float(input("Enter Merkaba size in meters (default: 0.5): ") or "0.5")

merkaba = MerkabaResonator(size)

# Calculate resonant frequencies

modes = merkaba.calculate_resonant_frequencies(max_n=5)

# Print resonant modes

print(" Resonant Modes:")

for i, mode in enumerate(modes[:10]):

print(f"{i+1}. {mode['description']}")

# Print sacred geometry frequencies

sacred_freqs = merkaba.sacred_geometry_frequencies()

print(" Sacred Geometry Frequencies:")

for name, freq in sacred_freqs.items():

print(f"{name}: {freq:.2f} Hz")

# Visualize Merkaba

visualize = input(" Visualize Merkaba resonator? (y/n): ").lower() == 'y'

if visualize:

merkaba.visualize_merkaba()

if __name__ == "__main__":

main()

```

4. **Make the script executable**:

```bash

chmod +x ~/qvpi/merkaba/resonance_config.py

```

## Testing Your Audio Setup

To verify your audio setup is working correctly:

1. **Test JACK Configuration**:

```bash

qjackctl &

```

- Start the JACK server by clicking "Start"

- Open the "Connections" window to route audio between applications

2. **Test Audio Recording and Playback**:

```bash

audacity &

```

- Create a new audio track

- Record a short audio clip

- Play it back to ensure the system is working

3. **Test the Acoustic Simulation**:

```bash

cd ~/qvpi/acoustic/

./transducer_array.py

```

4. **Test the Audio Analyzer**:

```bash

cd ~/qvpi/acoustic/

./audio_analyzer.py

```

5. **Test the Merkaba Resonance Calculator**:

```bash

cd ~/qvpi/merkaba/

./resonance_config.py

```

## Troubleshooting

If you encounter issues with your audio setup:

1. **JACK Won't Start**:

- Check that your audio device is properly connected

- Ensure your user is in the audio group: `groups $USER`

- Try setting a higher frames/period value in QJackCtl setup

- Verify your system limits: `ulimit -r -l`

2. **Audio Dropouts or Xruns**:

- Increase the frames/period value in QJackCtl

- Close CPU-intensive applications

- Disable power management for better performance: `sudo cpupower frequency-set -g performance`

3. **No Sound in Applications**:

- Check that applications are correctly routed in QJackCtl connections

- Verify PulseAudio is properly connected to JACK

4. **PulseAudio Problems**:

- Reset PulseAudio: `pulseaudio -k && pulseaudio --start`

- Check the connection between PulseAudio and JACK in QJackCtl

## Conclusion

You now have a professional audio setup on Fedora Core 41 with capabilities for advanced audio processing, acoustic levitation simulation, and Merkaba resonance analysis. This setup provides the foundation for the audio components of the Quantum Vacuum Propulsion Initiative (QVPI) project.

For further optimization and integration with quantum cryptography components, refer to the quantum_crypto_setup.md guide.

Previous
Previous

What They Say

Next
Next

Fedora Installing-liboqs